

FURTHER ISOCEDRENE DERIVATIVES AND OTHER CONSTITUENTS FROM *PEREZIA* SPECIES

C. ZDERO, F. BOHLMANN, J. SOLOMON* and X. A. DOMINGUEZ†

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Herbario Nacional de Bolivia, La Paz, Bolivia; †Instituto Technologico y de Estudios Superiores de Monterrey, C.P. 64849 Monterrey, N.L., Mexico

(Revised received 24 June 1987)

Key Word Index—*Perezia multiflora*; *P. runcinata*; Compositae; sesquiterpenes; isocedrene derivatives; germacrane; eudesmanes; unusual monoterpane derivative.

Abstract—The investigation of the aerial parts of two *Perezia* species afforded in addition to known isocedrene derivatives 10 new ones, 10 sesquiterpene esters and a pair of epimeric diesters. The structures were elucidated by high field NMR spectroscopy.

INTRODUCTION

The South American genus *Perezia* (tribe Mutisieae, subtribe Nassauviinae) with about 30 species and the North American genus *Acourtia* (previously a section of *Perezia*) with ca 40 species have already been studied in some detail chemically. Most common are perezone derivatives [1-4] but also 5-methyl coumarins [3, 6-9] and some less common sesquiterpenes have been reported [2, 3]. Both *P. multiflora* (H. et B.) Less [6, 8] and the roots of *P. runcinata* Lag. ex D. Don. [5] have been studied previously. We have now reinvestigated both species.

RESULTS AND DISCUSSION

The extract of the aerial parts of *P. multiflora* afforded in addition to the known isocedrenes 2e-g [9, 10] seven new ones (1a, 1e, 2a-d and 3). Furthermore, a complex mixture of sesquiterpene esters was present which finally gave the germacradiene derivatives 4a-c as well as the eudesmane derivatives 5a-c and 6a-d.

The extract of the aerial parts of *P. runcinata* afforded in addition to the perezones reported previously [5], the isocedrenes, 1a-d and 2a as well as the epimeric diesters 8a/b.

The ¹H NMR spectrum of 1a (Table 1) was in part close to that of the corresponding methyl senecioate [10]. The characteristic signals of the angelate residue indicated the nature of the ester group and the observed couplings showed that the configuration was the same as in the methyl senecioate [10].

The ¹H NMR spectrum of 1b (Table 1) differed from that of 1a by the presence of a further low field signal (δ 5.22 *dt*) and a second set of angelate signals. Spin decoupling allowed the assignment of all signals. The chemical shift of H-8 required an oxygen function at C-8. Accordingly, a 3,8-diangeloyloxy derivative was present. The configuration followed from the observed couplings which nicely agreed with those of the corresponding 8 α -acetoxy derivative [10]. The spectrum of 1c (Table 1) clearly showed that this compound only differed from 1b by the replacement of one angelate by a tiglate group.

However, the relative position of the unsaturated esters could not be determined from the observed chemical shifts which were almost identical with those in the spectrum of 1b. This excluded the possibility that one of the unsaturated ester groups was at C-14. The relative position of these groups could be determined by NOE difference spectroscopy. Clear effects were obtained between H-13, H-12 (10%), H-9 (10%) and H-2 (8%), between H-12, H-10 (15%), H-4 (6%), H-13 (10%), the tiglate methyl (10%) and the tiglate proton at C-3' (10%). These effects required a tiglate group at C-3. Further NOEs were present between methoxy, H-15 (10%) and H-14 (4%), between H-8, H-14 (6%) and H-10 (3%), between H-4, H-3 (5%) and H-15 (20%), between H-14 and H-8 (5%) as well as between H-3, H-4 (6%) and H-2 (6%). These effects again also established the configuration at all chiral centres.

The ¹H NMR spectrum of 1d (Table 1) differed from that of 1c by the absence of the angelate signals and by the upfield shift of H-8. Accordingly, the corresponding 8-desacyl derivative was present. The spectrum of 1e (Table 1) showed some similarities with that of 1a. However, the acetate methyl signal was missing and the corresponding H-14 signal at δ 5.90 was replaced by a broadened triplet at δ 4.95. Spin decoupling showed that the corresponding proton was coupled with a hydroxy proton (δ 2.50 *br d*). The remaining coupling ($J = 8$ Hz) indicated the 14 β -orientation of the hydroxy group. The nature of the function at C-8 changes the conformation as follows from the coupling $J_{7,14}$.

The ¹H NMR spectrum of 2a (Table 1) differed from that of 1c mainly by the couplings of H-14 and by the chemical shift of some signals. These differences are typical for isocedrenes with the opposite configurations at C-14 and C-15 as in 2f [9, 10]. The spectrum of 2a therefore also was close to that of 2f. Again the H-15 signal was shifted upfield due to the replacement of the acetoxy by a methoxy group. Similar the ¹H NMR of 2b (Table 1) indicated that it was an isomer of 1a with the opposite configuration at C-14 and C-15.

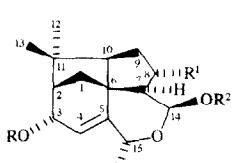
The ¹H NMR spectra of 2c and 2d (Table 1) only differed by the signals of one ester group. While the typical signals of an isobutyrate were duplicated in the case of 2c

Table 1. ^1H NMR data of compounds **1a–1e**, **2a–2d** and **3** (400 MHz, CDCl_3 , δ -values)

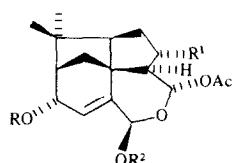
H	1a	1b	1c	1d	1e[†]	2a	2b	2c	2d	3	Multiplicity
2	2.21 <i>t</i>	2.28	2.25	2.25	2.21 <i>t</i>	2.30	2.29 <i>t</i>	2.20	2.27 <i>t</i>	2.25 <i>t</i>	<i>m</i>
3	5.79	5.84	5.83	5.84	5.83	5.89	5.88 <i>dt</i>	5.79 <i>dt</i>	5.83 <i>dt</i>	5.13	<i>dd</i>
4	5.38	5.45	5.43	5.39 <i>br s</i>	5.43	5.50 <i>dt</i>	5.49 <i>dt</i>	5.30 <i>dt</i>	5.35 <i>dt</i>	6.01 <i>dd</i>	<i>br t</i>
7	2.41	2.28 <i>m</i>	2.25 <i>m</i>	2.25 <i>m</i>	*	2.30 <i>m</i>	*	*	*	2.04 <i>m</i>	<i>br t</i>
8	1.95 <i>m</i>	5.22	5.23	4.31	*	5.10	*	4.99	4.98	*	<i>dt</i>
10	2.49	2.54	2.55	2.41 <i>dd</i>	2.42	2.17 <i>m</i>	*	*	*	*	<i>br t</i>
12	1.19	1.29	1.31	1.30	1.27	1.30	1.27	1.28	1.28	1.32	<i>s</i>
13	0.91	1.04	1.04	1.04	1.02	1.04	1.03	1.05	1.04	1.04	<i>s</i>
14	5.90	6.05	6.05	6.12	4.95 <i>t</i>	6.03	5.84	5.99	6.00	5.93	<i>d</i>
15	4.94	5.02	5.02	5.00	5.05	5.23 <i>t</i>	5.22 <i>t</i>	6.69 <i>t</i>	6.69 <i>t</i>	5.88 <i>d</i>	<i>s</i>
OAc	2.10	2.10	2.10	2.09		2.04	2.04	2.08	2.08	2.10	<i>s</i>
								2.07	2.05	2.07	<i>s</i>
OMe	3.45	3.46	3.46	3.43	3.41	3.42	3.42	—	—	—	—
OCOR	6.06	6.07	6.07	6.87	6.06	6.86	6.05	2.54	2.51	6.08	<i>qq</i>
				6.87		6.08		2.51	5.66		<i>qq</i>
	1.99	2.01	1.99	1.80	2.01	1.81	2.00	1.19 <i>d</i>	1.16 <i>d</i>	1.99	<i>dq</i>
	1.86	1.99	1.80	1.84	1.90	1.98	1.89	1.16 <i>d</i>	2.18 <i>d</i>	1.87	<i>dq</i>
	1.90		1.90			1.85			1.91 <i>d</i>		<i>dq</i>
	1.89		1.85			1.88					<i>dq</i>

^{*}Overlapped multiplet.[†]OH: 2.50 *br d*.

J[Hz]: Compounds **1a–1e**: 1,2 = 2.3 ~ 5; 2,4 = 1.5; 3,4 = 2; 7,14 = 8.5; 9,10 = 9; [Compounds **1b/1d**: 7,14 = 6; 7,8 = 8.9 = 8.9' ~ 6.5; (compound **1d**: 7,14 = 4); compound **1e**: 7,14 = 14, OH ~ 7]; compounds **2a–2d**: 1,2 = 2.3 = 4.5; 3,4 = 3.15 = 4.15 = 7.14 = 2; (compounds **2c** and **2d**: 7,8 = 8.9 = 9; 8,9' = 5); compound **3**: 1,2 = 4; 2,3 = 3.5; 3,4 = 9; 4,15 = 2; 7,14 = 3; OAng: 3.4 = 7; 3,5 = 4.5 = 1.5; OiBu: 2,3 = 2.4 = ; OSe: 2,4 = 2.5 = 1.


in the spectrum of **2d** one isobutyryloxy was replaced by a senecioyloxy group. The position of the ester groups followed from the results of spin decoupling. The relative position of the ester groups in the isocedrene derivative **2d** was deduced from the shift differences of H-3. As in similar cases, the unsaturated ester group causes a small down-field shift.

The ^1H NMR spectrum of **3** (Table 1) differed markedly from those of **2a–g**. The molecular formula indicated that an isomer of **2e** was present. While several signals were similar in the spectra of both isomers several were typically different. In particular the lowfield signals indicated a changed substitution pattern. Spin decoupling showed that the pair of doublets at δ 5.13 and 6.01 were due to the protons at C-3 and C-4. The vicinal coupling of 9 Hz required a *trans*-orientation of the oxygen functions at these carbons while the coupling of H-14 indicated an α -orientation of the acetoxy group. The presence of an enoether was deduced from the chemical shift of H-15 (δ 5.88). Thus compound **3** was an isomer formally formed by allylic rearrangement of **2e**.


The structures of **4a–c** followed from the molecular formulae and the ^1H NMR spectra (Table 2) which showed the typical highly broadened signals of a germacra-4,1(10)-diene. Even at elevated temperature no clear signals could be observed. At -30° the presence of different conformers could be detected. Cope rearrangement of **4a** afforded the elemene derivative **7** where the ^1H NMR signals (Table 2) were clear and could be assigned by spin decoupling. The corresponding alcohol has been reported previously [11]. The ^1H NMR data are very similar. The esters **4b** and **4c** could not be separated, but the nature of the esters clearly followed from the ^1H NMR signals.

The ^1H NMR spectra of **5a–c** (Table 2) showed that the corresponding eudesma-4(15),11(13)-dienes were present. Accordingly, the spectra were close to that of costol. Again the mixture of the isovalerate and the methyl butyrate could not be separated.

The spectra of **6a–d** (Table 2) clearly indicated that the

	1a	1b	1c	1d	1e
R	Ang	Ang	Tigl	Tigl	Ang
R ¹	H	OAng	OAng	OH	H
R ²	Ac	Ac	Ac	Ac	H

	2a	2b	2c	2d	2e	2f	2g
R	Tigl	Ang	<i>i</i> Bu	Sen	Ang	Ang	Ang
R ¹	OAng	H	O <i>i</i> Bu	O <i>i</i> Bu	H	OAng	OH
R ²	Me	Me	Ac	Ac	Ac	Ac	Ac

Table 2. ^1H NMR spectral data of compounds **4a–4c**, **5a–5c**, **6a–6d** and **7** (400 MHz, CDCl_3 , δ -values)

H	4a	4b	4c	5a	5b	5c	6a	6b	6c	6d	7*
1	4.78 br d	4.79 br d									5.82 dd
3	2.25 m	2.15 m		$\begin{cases} 2.31 \text{ br d} \\ 2.01 \text{ m} \end{cases}$	$\begin{cases} 2.31 \text{ br d} \\ 2.11 \text{ m} \end{cases}$		5.32 br s	5.32 br s	5.33 br s		$\begin{cases} 4.83 \text{ br s} \\ 4.59 \text{ br s} \end{cases}$
5	4.50 br d	4.50 br d	1.83 br d	1.82 br d	1.82 br d	1.83 br d	1.82 br d	1.83 br d	1.82 br d	1.82 br d	2.00 m
12	4.67 br s	4.60 br s	4.66 br s	4.61 br s	4.69 br s	4.61 br s	4.61 br s	4.61 br s	4.61 br s	4.61 br s	4.67 br s
13	4.97 br s	4.94 br s	5.08 br s	5.05 br s	5.08 br s	5.05 br s	5.05 br s	5.05 br s	5.05 br s	5.05 br s	5.08 br s
13'	4.94 br s	4.93 br s	5.02 br s	5.01 br s	5.02 br s	5.01 br s	5.02 br s	5.00 br s	5.01 br s	5.01 br s	5.02 br s
14	$\begin{cases} 1.41 \text{ br s} \\ 1.49 \text{ br s} \end{cases}$	$\begin{cases} 1.40 \text{ br s} \\ 1.49 \text{ br s} \end{cases}$	0.75 s	0.75 s	0.83 s	0.82 s	0.82 s	0.82 s	0.82 s	0.82 s	1.02 s
15	$\begin{cases} 1.54 \text{ br s} \\ 1.56 \text{ br s} \end{cases}$	$\begin{cases} 1.54 \text{ br s} \\ 1.56 \text{ br s} \end{cases}$	$\begin{cases} 4.72 \text{ q} \\ 4.44 \text{ q} \end{cases}$	$\begin{cases} 4.72 \text{ q} \\ 4.44 \text{ q} \end{cases}$	1.61 br s	1.61 br s	1.61 br s	1.61 br s	1.61 br s	1.61 br s	1.71 br s
OCOR	6.10 br q	2.23 m	2.42 m	6.09 qq	2.24 d	2.40 tq	6.09 qq	2.60 qq	2.24 d	2.42 tq	6.09 qq
	2.02 br d	2.14 m	0.94 t	2.01 dq	2.11 m	0.93 t	2.01 dq	1.21 d	2.05 m	0.93 t	2.00 dq
	1.94 br s	0.99 d	1.19 d	1.92 dq	0.98 d	1.15 d	1.93 dq	0.98 d	1.18 d	1.92 dq	

*H-2 4.92 and 4.91 d.

J[Hz]: Compounds **4a–c**: 1,2 = 11; 5,6 = 10; compounds **5a–c**: 3,3' = 5,6 = 13; 3,15 = 5,15 = 1.5; compounds **6a–d**: 5,6 = 13; OAng: 3,4 = 7; 3,5 = 4,5 = 1.5; OfVal: 2,3 = 3,4 = 3,5 = 7; OMeBu: 2,3 = 2,5 = 3,4 = 7.

isomeric Δ^3 eudesmanes were present. While **6a** and **6b** could be obtained pure again **6c** and **6d** were obtained as a mixture which could not be separated.

The spectral data of the last epimeric mixture (**8a/b**) indicated the presence of an unusual type. The molecular formula was $\text{C}_{16}\text{H}_{28}\text{O}_6$. As, however, the fragmentation pattern indicated the presence of two methoxy groups a norsesquiterpene structure had to be proposed. The ^1H NMR spectrum (Table 3) showed sets of doubled signals: four methoxy singlets, four olefinic methyl singlets, two methyl singlets at δ 1.65 and 1.64 as well as two methyl doublets. Also several other signals seemed to be doubled. Similar in the ^{13}C NMR spectrum (Table 3) nearly two sets of 16 carbons were visible. Spin decoupling in the ^1H NMR spectrum allowed the assignment of all signals. The resulting sequence clearly indicated the presence of a side chain derived from citronellol where the first carbon was missing. The remaining signals together with those from the ^{13}C NMR spectrum required the presence of a methyl succinate substituted with two hydroxy-, a methyl group and a norcitronellol residue. The relative configuration followed from the absence of a NOE between H-13 and H-2 as well as from a long range coupling of H-2 in both epimers with a hydroxy group. As followed from the IR spectrum all hydroxy groups were hydrogen bonded. Inspection of a model showed that this leads to a nice chair-chair-conformation. As the chemical shifts of H-10 and H-2 showed the largest differences most likely the epimers differed at C-11 and C-12. This would explain the observed shift differences as H-10 would be close to the carbonyl group in one epimer and close to hydroxy in the other. Most likely the epimers are derived from 2,3-dihydrogeranic acid by condensation with a hydroxy ketone derived from mesaconic acid followed by decarboxylation.

This investigation again shows that isocedrenes are typical for the subtribe Nassauviinae. Sesquiterpene esters of types **4a–c**, **5a–c** and **6a–d** so far have not been reported. Perhaps they are more widespread, as they are easily overlooked when present in low concentration. As point-

ed out previously [7] there are indications that the North American *Perezias* (Sect. *Acourtia* [12], now separated as genus *Acourtia* [13]) contain perezone derivatives while the South American species [14] mostly afforded 5-methyl coumarins.

EXPERIMENTAL

The air-dried plant material was extracted with MeOH – Et_2O –petrol (1:1:1), and the extracts obtained were worked-up as reported previously [15]. The extract from 760 g of aerial parts of *P. multiflora* (voucher Solomon 16318, collected in Bolivia in February 1987, deposited in the National Herbarium of Bolivia) was separated first by CC (silica-gel) into three fractions (1: Et_2O –petrol, 3:1 and 1:1:2; Et_2O –petrol, 3:1 and 3: Et_2O). Fraction 1 was separated by TLC (silica gel), Et_2O –petrol, 1:3) affording two bands (1/1 and 1/2). Fraction 1/1 was further separated by TLC (silica gel, AgNO_3 coated, Et_2O –petrol, 1:9) which gave four bands (1/1/1–1/1/4). HPLC (MeOH – H_2O , 9:1, always RP 18, ca 100 bar) of 1/1/1 gave 2 mg **6a** (R_f 15.6 min.). HPLC of 1/1/2 (same solvent) afforded 0.5 mg **6b** (R_f 12.0 min.) and 2 mg **6c/d** (ca 3:1) (R_f 14.3 min.). HPLC of 1/1/3 (same solvent) gave 2 mg **5b/c** (ca 2:1) (R_f 13.3 min.) and 2 mg **5a** (R_f 14.5 min.). HPLC of 1/1/4 (same solvent) afforded 4 mg **4b/c** (ca 1:1) (R_f 11.4 min.) and 4 mg **4a** (R_f 12.0 min.). TLC of fraction 1/2 (Et_2O –petrol, 1:3) gave 140 mg **1a** (R_f 0.45) and 30 mg **2b** (R_f 0.35). CC fraction 2 gave by TLC (Et_2O –petrol, 1:1) 30 mg of a mixture of **1a** and **2b** (ca 1:1) and a complex mixture which was separated by HPLC (MeOH – H_2O , 17:3) affording a mixture (3/1, R_f 2.3 min.), 500 mg **2e** (R_f 3.2 min.), a further mixture (3/3, R_f 3.5 min.) and 500 mg **2f** (R_f 4.2 min.). TLC of 3/1 (Et_2O –petrol, 1:1) gave 1 mg **3** (R_f 0.65), 3 mg **2c** (R_f 0.50) and 1 mg **1e** (R_f 0.25). Repeated HPLC of 3/3 (MeOH – H_2O , 4:1) gave 5 mg **1a** and a mixture which afforded by TLC (Et_2O –petrol, 1:1) 1 mg **2d** (R_f 0.42). TLC of CC fraction 3 gave by TLC (Et_2O –petrol, 3:1) 1.9 g **2g** (R_f 0.30).

The extract of the aerial parts of *P. runcinata* (300 g, collected near Apodaca, N. L. in July 1986, voucher 8120, deposited in the Herbarium of the Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico) was separated by CC. The two

Table 4. Spectral data of compounds **1a–1e**, **2a–2d**, **3**, **4a–4c**, **5a–5c**, **6a–6d**, **7** and **8a/b**

OH	CO ₂ R	M ⁺	MS m/z (rel. int.)
1a	—	1755, 1710	372.194 (1.5) (C ₂₂ H ₂₈ O ₅)*, 344 (25), 290 (6), 262 (22), 83 (100)
1b	—	1755, 1710	442.236 (34) (C ₂₆ H ₃₄ O ₆)†, 360 (26), 261 (17), 228 (51), 83 (100)
1c	—	1755, 1715	442.236 (12) (C ₂₆ H ₃₄ O ₆)†, 360 (10), 260 (16), 228 (6), 83 (100)
1d	3600	1755, 1705	360.194 (3) (C ₂₁ H ₂₈ O ₅)†, 278 (10), 260 (3), 83 (100)
1e	3600	1715	330.183 (2.5) (C ₂₀ H ₂₆ O ₄)*, 248 (28), 230 (2), 83 (100)
2a	—	1755, 1705	442.236 (11) (C ₂₆ H ₃₄ O ₆)†, 360 (11), 260 (8), 228 (6), 83 (100)
2b	—	1755, 1715	344.199 (22) (C ₂₁ H ₂₈ O ₄)†, 262 (23), 231 (9), 83 (100)
2c	—	1755, 1730	418.199 (7) (C ₂₃ H ₃₀ O ₇)‡, 376 (100), 334 (48), 290 (63), 248 (19)
2d	—	1760, 1735, 1715	458.230 (3) (C ₂₆ H ₃₄ O ₇)‡, 418 (2.5), 376 (4), 262 (5), 83 (100)
3	—	1750, 1715	373.202 (6) (C ₂₂ H ₂₉ O ₅)§, 332 (8), 290 (12), 230 (10), 83 (100)
4a	—	1715	302.225 (2) (C ₂₀ H ₃₀ O ₂), 202 (41), 187 (53), 83 (100)
4b/c	—	1735	304.240 (2) (C ₂₀ H ₃₂ O ₂), 202 (29), 187 (50), 145 (53), 57 (100)
5a	—	1715	302.225 (3) (C ₂₀ H ₃₀ O ₂), 203 (27), 202 (24), 187 (29), 83 (100)
5b/c	—	1730	304.240 (8) (C ₂₀ H ₃₂ O ₂), 202 (87), 187 (100), 85 (37)
6a	—	1715	302.225 (10) (C ₂₀ H ₃₀ O ₂), 202 (88), 187 (100), 83 (86)
6b	—	1730	290.225 (5) (C ₁₉ H ₃₀ O ₂), 202 (66), 187 (100), 71 (44)
6c/d	—	1730	304.240 (3.5) (C ₂₀ H ₃₂ O ₂), 202 (67), 187 (100), 85 (23)
7	—	1715	302.225 (0.5) (C ₂₀ H ₃₀ O ₂), 202 (22), 187 (30), 83 (100)
8a/b	3500	1735	316.189 (0.5) (C ₁₆ H ₂₈ O ₆), 298 (2), 266 (6), 239 (4), 207 (2), 179 (7), 104 (100)

*M = MeOH.

†M = AcOH.

‡M = RCO₂H.

§M = OAc.

polar fractions (1:Et₂O–petrol, 1:1 and 2: Et₂O and Et₂O–MeOH, 9:1) were separated by TLC. Fraction 1 (Et₂O–petrol, 1:1) gave two bands (1/1 and 1/2) and fraction 2 (Et₂O–petrol, 3:1) also two bands (2/1 and 2/2). HPLC of 1/1 (MeOH–H₂O, 9:1, always RP 8, *ca* 100 bar) gave 6 mg **1a** (*R*, 2.5 min). HPLC of 1/2 (same solvent) gave a mixture which was separated by TLC (Et₂O–petrol, 1:3, two developments) affording 5 mg **1b** (*R*, 0.45), 5 mg **1c** (*R*, 0.38) and 3 mg **2a** (*R*, 0.28). HPLC of 2/1 (MeOH–H₂O, 4:1) gave 3 mg **8a/b** (*R*, 3.2 min). and HPLC of 2/2 (same solvent) afforded 5 mg **1d** (*R*, 3.2 min). Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material. The IR and MS data are summarized in Table 4.

Cope reaction of 4a. 4 mg **4a** were heated in a sealed tube (evacuated) for 1 hr at 180°. The ¹H NMR spectrum indicated complete transformation to **7**, colourless oil, ¹H NMR: Table 2.

Acknowledgements— We thank the Deutsche Forschungsgemeinschaft and X.A.D. thanks CONACYT (grant PCECBNA-031053) for financial support.

REFERENCES

- Walls, F., Salmon, M., Padilla, M., Joseph-Nathan, P. and Romo, J. (1965) *Bot. Inst. Quim. Univ. Nac. Auton. Mexico*, **17**, 3.
- Joseph-Nathan, P., Hernandez, J. D., Roman, L. U., Garcia, G. E. and Mendoza, V. (1982) *Phytochemistry* **21**, 669.
- Joseph-Nathan, P., Hernandez, J. D., Roman, L. U., Garcia, G. E., Mendoza, V. and Mendoza, S. (1982) *Phytochemistry* **21**, 1129.
- Joseph-Nathan, P., Gutierrez, A., Hernandez, J. D., Roman, L. U. and Santillan, R. L. (1986) *J. Nat. Prod.* **49**, 79.
- Joseph-Nathan, P., Garcia, G. E. and Mendoza, V. (1977) *Phytochemistry* **16**, 1086.
- Bohlmann, F. and Zdero, C. (1977) *Phytochemistry* **16**, 239.
- Angeles, L. R., de Lock, U., Salkeld, I. C. and Joseph-Nathan, P. (1984) *Phytochemistry* **23**, 2094.
- Joseph-Nathan, P., Hidalgo, I. and Abramo-Bruno, D. (1978) *Phytochemistry* **17**, 583.
- Bohlmann, F. and Zdero, C. (1979) *Chem. Ber.* **112**, 427.
- Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1986) *Phytochemistry* **25**, 2873.
- Maurer, B. and Grieder, A. (1977) *Helv. Chim. Acta* **60**, 2177.
- Bacigalupi, R. (1931) *A Monograph of the genus Perezia Section Acourtia*. The Gray Herb. of Harvard, Cambridge.
- Cabrera, A. L. (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L. eds) p. 1044. Academic Press, London.
- Vuilleumier, B. S. (1970) *The Systematics and Evolution of Perezia Sect. Perezia*. The Gray Herb. of Harv., Cambridge.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979.